Collective Diffusion Over Networks: Models and Inference
نویسندگان
چکیده
Diffusion processes in networks are increasingly used to model the spread of information and social influence. In several applications in computational sustainability such as the spread of wildlife, infectious diseases and traffic mobility pattern, the observed data often consists of only aggregate information. In this work, we present new models that generalize standard diffusion processes to such collective settings. We also present optimization based techniques that can accurately learn the underlying dynamics of the given contagion process, including the hidden network structure, by only observing the time a node becomes active and the associated aggregate information. Empirically, our technique is highly robust and accurately learns network structure with more than 90% recall and precision. Results on real-world flu spread data in the US confirm that our technique can also accurately model infectious disease spread.
منابع مشابه
Learning and Inference in Massive Social Networks
Researchers and practitioners increasingly are gaining access to data on explicit social networks. For example, telecommunications and technology firms record data on consumer networks (via phone calls, emails, voice-over-IP, instant messaging), and social-network portal sites such as MySpace, Friendster and Facebook record consumer-generated data on social networks. Inference for fraud detecti...
متن کاملSemiotics of Collective Memory of the Iran-Iraq War (Holy Defence): A Case Study of the Shared Images in Virtual Social Networks
This study aims to achieve a semiotic understanding of collective memory of the Iran-Iraq war. For this purpose, samples of images in virtual social networks shared in response to the news of discovery and return of the bodies of more than 175 divers have been analyzed. Visual signs in photographs, cartoons, graphic designs, prints, paintings and posters, in methods of historical pictures and f...
متن کاملPrediction of Bubble Point Pressure & Asphaltene Onset Pressure During CO2 Injection Using ANN & ANFIS Models
Although CO2 injection is one of the most common methods in enhanced oil recovery, it could alter fluid properties of oil and cause some problems such as asphaltene precipitation. The maximum amount of asphaltene precipitation occurs near the fluid pressure and concentration saturation. According to the description of asphaltene deposition onset, the bubble point pressure has a very special imp...
متن کاملImproving the Inference of Gene Expression Regulatory Networks with Data Aggregation Approach
Introduction: The major issue for the future of bioinformatics is the design of tools to determine the functions and all products of single-cell genes. This requires the integration of different biological disciplines as well as sophisticated mathematical and statistical tools. This study revealed that data mining techniques can be used to develop models for diagnosing high-risk or low-risk lif...
متن کاملModeling environmental indicators for land leveling, using Artificial Neural Networks and Adaptive Neuron-Fuzzy Inference System
Land leveling is one of the most important steps in soil preparation and cultivation. Although land leveling with machines requires considerable amount of energy, it delivers a suitable surface slope with minimal soil deterioration as well as damage to plants and other organisms in the soil. Notwithstanding, in recent years researchers have tried to reduce fossil fuel consumption and its delete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1309.6841 شماره
صفحات -
تاریخ انتشار 2013